359 research outputs found

    Non-Convex Rank Minimization via an Empirical Bayesian Approach

    Full text link
    In many applications that require matrix solutions of minimal rank, the underlying cost function is non-convex leading to an intractable, NP-hard optimization problem. Consequently, the convex nuclear norm is frequently used as a surrogate penalty term for matrix rank. The problem is that in many practical scenarios there is no longer any guarantee that we can correctly estimate generative low-rank matrices of interest, theoretical special cases notwithstanding. Consequently, this paper proposes an alternative empirical Bayesian procedure build upon a variational approximation that, unlike the nuclear norm, retains the same globally minimizing point estimate as the rank function under many useful constraints. However, locally minimizing solutions are largely smoothed away via marginalization, allowing the algorithm to succeed when standard convex relaxations completely fail. While the proposed methodology is generally applicable to a wide range of low-rank applications, we focus our attention on the robust principal component analysis problem (RPCA), which involves estimating an unknown low-rank matrix with unknown sparse corruptions. Theoretical and empirical evidence are presented to show that our method is potentially superior to related MAP-based approaches, for which the convex principle component pursuit (PCP) algorithm (Candes et al., 2011) can be viewed as a special case.Comment: 10 pages, 6 figures, UAI 2012 pape

    Exploring Algorithmic Limits of Matrix Rank Minimization under Affine Constraints

    Full text link
    Many applications require recovering a matrix of minimal rank within an affine constraint set, with matrix completion a notable special case. Because the problem is NP-hard in general, it is common to replace the matrix rank with the nuclear norm, which acts as a convenient convex surrogate. While elegant theoretical conditions elucidate when this replacement is likely to be successful, they are highly restrictive and convex algorithms fail when the ambient rank is too high or when the constraint set is poorly structured. Non-convex alternatives fare somewhat better when carefully tuned; however, convergence to locally optimal solutions remains a continuing source of failure. Against this backdrop we derive a deceptively simple and parameter-free probabilistic PCA-like algorithm that is capable, over a wide battery of empirical tests, of successful recovery even at the theoretical limit where the number of measurements equal the degrees of freedom in the unknown low-rank matrix. Somewhat surprisingly, this is possible even when the affine constraint set is highly ill-conditioned. While proving general recovery guarantees remains evasive for non-convex algorithms, Bayesian-inspired or otherwise, we nonetheless show conditions whereby the underlying cost function has a unique stationary point located at the global optimum; no existing cost function we are aware of satisfies this same property. We conclude with a simple computer vision application involving image rectification and a standard collaborative filtering benchmark

    Initiation and Study of Localized Corrosion by Scanning Electrochemical Microscopy

    Get PDF
    This paper describes methods to study the initiation and formation of localized corrosion pits on stainless–steel and aluminum samples. These methods are based on the use of a scanned probe microscope, the scanning electrochemical microscope (SECM). The SECM is specifically designed for operation in electrolyte solution and so is uniquely suited for examination of corrosion processes. SECM imaging of a corrosion pit on stainless steel is presented. In addition, the initiation of single pits on aluminum and stainless steel by using the SECM tip to electrogenerate a local source of Cl– is described

    Transformational leadership and teachers\u27 tendency to take risks

    Get PDF
    • …
    corecore